Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nanomaterials (Basel) ; 14(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38727342

RESUMO

Thermoelectric power can convert heat and electricity directly and reversibly. Low-dimensional thermoelectric materials, particularly thin films, have been considered a breakthrough for separating electronic and thermal transport relationships. In this study, a series of Bi0.5Sb1.5Te3 thin films with thicknesses of 0.125, 0.25, 0.5, and 1 µm have been fabricated by RF sputtering for the study of thickness effects on thermoelectric properties. We demonstrated that microstructure (texture) changes highly correlate with the growth thickness in the films, and equilibrium annealing significantly improves the thermoelectric performance, resulting in a remarkable enhancement in the thermoelectric performance. Consequently, the 0.5 µm thin films achieve an exceptional power factor of 18.1 µWcm-1K-2 at 400 K. Furthermore, we utilize a novel method that involves exfoliating a nanosized film and cutting with a focused ion beam, enabling precise in-plane thermal conductivity measurements through the 3ω method. We obtain the in-plane thermal conductivity as low as 0.3 Wm-1K-1, leading to a maximum ZT of 1.86, nearing room temperature. Our results provide significant insights into advanced thin-film thermoelectric design and fabrication, boosting high-performance systems.

2.
ACS Appl Mater Interfaces ; 16(3): 3520-3531, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38194411

RESUMO

Mg-Sn alloy thin films have garnered significant attention for their outstanding thermoelectric (TE) properties and cost-effective elemental composition, making them potential candidates for wearable energy harvesting devices. While previous studies have explored the properties of these thin films, limited research has been conducted to identify physical factors that can further enhance their performance. In this study, we present a novel approach utilizing a convenient electron beam coevaporation technique to fabricate Mg-Sn alloy thin films. Experimental results revealed that controlling the tin content in the Mg-Sn thin films at 38.9% led to the formation of a mixed-phase structure, comprising Mg2Sn and Mg9Sn5. This dual-phase structure exhibited a notable advantage in enhancing the TE performance. The presence of the Mg9Sn5 phase significantly increased the carrier concentration, while maintaining the original Seebeck coefficient and mobility, thereby improving the conductivity of Mg2Sn. Theoretical calculations indicated that the Mg9Sn5 phase displayed 1D-like characteristics, leading to a highly effective valley degeneracy and consequently a high power factor. Overall, this work introduces a promising approach to fabricate high-performance Mg-Sn alloy thin films through electron beam coevaporation, opening up possibilities for their application in wearable energy harvesting devices.

3.
J Phys Chem Lett ; 14(31): 6968-6976, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37506173

RESUMO

Highly concentrated aqueous electrolytes have attracted attention due to their unique applications in lithium ion batteries (LIBs). However, the solvation structure and transport mechanism of Li+ cations at concentrated concentrations remain largely unexplored. To address this gap in knowledge, we employ ultrafast infrared spectroscopy and molecular dynamics (MD) simulations to reveal the dynamic and spatial structural heterogeneity in aqueous lithium chloride (LiCl) solutions. The coupling between the reorientation dynamics of the extrinsic probe and the macroscopic viscosity in aqueous LiCl solutions was analyzed using the Stokes-Einstein-Debye (SED) equations. MD simulations reveal that the Cl- and Li+ form chain-like structures through electrostatic interactions, supporting the vehicular migration of Li+ through the chain-like structure. The concentration dependent conductivity of the LiCl solution is well reproduced, where Li(H2O)2+ and Li(H2O)3+ are the dominant species that contribute to the conduction of Li+. This study is expected to establish correlations between ion pair structures and macroscopic properties.

4.
Angew Chem Int Ed Engl ; 62(23): e202303506, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37016787

RESUMO

Development of supramolecular adhesives with strong tolerance to extreme conditions has emerged as an important research area. In this study, by balancing supramolecular interactions such as hydrogen bonding interactions, electrostatic interactions, π-π stacking interactions, and cation-π interactions, we designed and prepared a series of two-component supramolecular adhesives derived from small organic molecules. Highly efficient interfacial adhesion with maximum adhesion strength of ≈10.0 MPa was realized on various surfaces in air, organic solvents, or liquid nitrogen. Owing to balanced supramolecular interactions, water participation prolonged and increased the tolerance of the adhesives in extreme environments. We demonstrate that the combination of imidazole-based ionic liquids and phenols can be applied for various interfacial adhesions, thereby aiding the development of next-generation adhesives capable of adapting to various extreme conditions in a controlled manner.

5.
Nano Lett ; 23(8): 3507-3515, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37027828

RESUMO

Phosphorus has been regarded as one of the most promising next-generation lithium-ion battery anode materials, because of its high theoretical specific capacity and safe working potential. However, the shuttle effect and sluggish conversion kinetics hamper its practical application. To overcome these limitations, we decorated SnO2 nanoparticles at the surface of phosphorus using an electrostatic self-assembly method, in which SnO2 can participate in the discharge/charge reaction, and the Li2O formed can chemically adsorb and suppress the shuttle of soluble polyphosphides across the separator. Additionally, the Sn/Li-Sn alloy can enhance the electrical conductivity of the overall electrode. Meanwhile, the similar volume changes and simultaneous lithiation/delithiation process in phosphorus and SnO2/Sn are beneficial for avoiding additional particle damage near two-phase boundaries. Consequently, this hybrid anode exhibits a high reversible capacity of ∼1180.4 mAh g-1 after 120 cycles and superior high-rate performance with ∼78.5% capacity retention from 100 to 1000 mA g-1.

6.
Adv Sci (Weinh) ; 9(30): e2203662, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36054543

RESUMO

2D organic molecular crystals (2DOMCs) are promising materials for the fabrication of high-performance optoelectronic devices. However, the growth of organic molecules into 2DOMCs remains a challenge because of the difficulties in controlling their self-assembly with a preferential orientation in solution-process crystallization. Herein, fullerene is chosen as a model molecule to develop a supramolecular gel crystallization approach to grow large-area 2DOMCs by controlling the perfect arrangement on the {220} crystal plane with the assistance of a gelated solvent. In this case, the gel networks provide tuneable confined spaces to control the crystallization kinetics toward the growth of dominant crystal faces by their inhibiting motions of solvent or solute molecules to enable the growth of perfect crystals at appropriate nucleation rates. As a result, a large-area fullerene 2DOMC is produced successfully and its corresponding device on a flexible substrate exhibits excellent bendable properties and ultra-high weak light detection ability (2.9 × 1011 Jones) at a 10 V bias upon irradiation with 450 nm incident light. Moreover, its photoelectric properties remain unchanged after 200 cycles of bending at angles of 45, 90, and 180°. These results can be extended to the growth of other 2DOMCs for potentially fabricating advanced organic (opto)electronics.


Assuntos
Fulerenos , Cristalização/métodos , Eletrônica , Solventes
7.
Adv Sci (Weinh) ; 9(20): e2201353, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35478495

RESUMO

Bismuth telluride-based thermoelectric (TE) materials are historically recognized as the best p-type (ZT = 1.8) TE materials at room temperature. However, the poor performance of n-type (ZT≈1.0) counterparts seriously reduces the efficiency of the device. Such performance imbalance severely impedes its TE applications either in electrical generation or refrigeration. Here, a strategy to boost n-type Bi2 Te2.7 Se0.3 crystals up to ZT = 1.42 near room temperature by a two-stage process is reported, that is, step 1: stabilizing Seebeck coefficient by CuI doping; step 2: boosting power factor (PF) by synergistically optimizing phonon and carrier transport via thermal-driven Cu intercalation in the van der Waals (vdW) gaps. Theoretical ab initio calculations disclose that these intercalated Cu atoms act as modulation doping and contribute conduction electrons of wavefunction spatially separated from the Cu atoms themselves, which simultaneously lead to large carrier concentration and high mobility. As a result, an ultra-high PF ≈63.5 µW cm-1 K-2 at 300 K and a highest average ZT = 1.36 at 300-450 K are realized, which outperform all n-type bismuth telluride materials ever reported. The work offers a new approach to improving n-type layered TE materials.

8.
ACS Nano ; 16(4): 5303-5315, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35302732

RESUMO

Interfacial adhesion under extreme conditions has attracted increasing attention owing to its potential application of stopping leakages of oil or natural gas. However, interfacial adhesion is rarely stable at ultralow temperatures and in organic solvents, necessitating the elucidation of the molecular-level processes. Herein, we used the intermolecular force-control strategy to prepare four linear polymers by tuning the proportion of hydrogen bonding and the number of electrostatic sites. The obtained polymeric ion liquids displayed strong dynamic adhesion at various interfaces. They also efficiently tolerated organic solvents and ultracold temperatures. Highly reversible rheological behaviors are observed within a thermal cycle between high and ultracold temperatures. Temperature-dependent infrared spectra and theoretical calculation reveal thermal reversibility and interfacial adhesion/debonding processes at the molecular level, respectively. This intermolecular force-control strategy may be applied to produce environmentally adaptive functional materials for real applications.

9.
Sensors (Basel) ; 22(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35161616

RESUMO

The mirror galvanometer is a crucial component of laser cutters/engravers. Novel two-dimensional mirror galvanometers demonstrate less trajectory distortion than traditional one-dimensional ones. This article proposes an optoelectronic sensor that measures a mirror's inclinations in two dimensions simultaneously. The measuring range, resolution, and sampling rate are ±10°, 0.0265°, and 2 kHz, respectively. With the proposed sensor, a closed-loop control can be further implemented to achieve precision laser machining. Its compact size and low cost meet the requirements of miniature laser engravers, which have become popular in recent years.

10.
J Hazard Mater ; 406: 124535, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33302186

RESUMO

This study aims to investigate the coeffects of predominantly exposed anatase TiO2{001} and {101} and CeO2 loading on the photo-oxidation of Hg0 to relieve the adverse effects caused by higher temperatures of 50-250 °C. The effect of loading CeO2 on the photocatalytic activity of morphology-controlled TiO2 was not only investigated using DFT with U correction but also experimentally analyzed by characterizing the electrochemical properties and the formation of free radicals. The theoretical calculation showed that CeO2 loading on TiO2{101} was more stable than that on TiO2{001}. Accordingly, a larger portion of CeO2 was observed to anchor to the (101) plane than to the (001) plane. CeO2 loading is more beneficial for increasing the distribution of photo-induced electrons and holes on the surface of 7%CeTi than on the surface of TiO2 and increases the energy difference between the conduction band edge of 7%CeTi and the standard redox potential of O2/·O2-. Correspondingly, the photocatalytic removal efficiencies (PREs) of Hg0 by 7%CeTi were significantly enhanced compared with those of pristine TiO2. The effect of CeO2 was highly morphologically dependent on the photocatalytic activity. This study provides valuable insight into surface engineering strategies for morphology-controlled photocatalysts for air pollution control technology.

11.
Adv Sci (Weinh) ; 7(24): 2002494, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344133

RESUMO

A record high zT of 2.2 at 740 K is reported in Ge0.92Sb0.08Te single crystals, with an optimal hole carrier concentration ≈4 × 1020 cm-3 that simultaneously maximizes the power factor (PF) ≈56 µW cm-1 K-2 and minimizes the thermal conductivity ≈1.9 Wm-1 K-1. In addition to the presence of herringbone domains and stacking faults, the Ge0.92Sb0.08Te exhibits significant modification to phonon dispersion with an extra phonon excitation around ≈5-6 meV at Γ point of the Brillouin zone as confirmed through inelastic neutron scattering (INS) measurements. Density functional theory (DFT) confirmed this phonon excitation, and predicted another higher energy phonon excitation ≈12-13 meV at W point. These phonon excitations collectively increase the number of phonon decay channels leading to softening of phonon frequencies such that a three-phonon process is dominant in Ge0.92Sb0.08Te, in contrast to a dominant four-phonon process in pristine GeTe, highlighting the importance of phonon engineering approaches to improving thermoelectric (TE) performance.

12.
Polymers (Basel) ; 12(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291537

RESUMO

With the recognition of the multiple advantages of proton transport membranes that can operate under anhydrous conditions and offer promising opportunities as fuel cells working at high temperatures, a number of such membranes have been developed, but the proton transport mechanism of these materials has not been fully understood. In this work, a theoretical investigation based on molecular dynamics simulations is carried out on a system that is very similar to a real anhydrous proton transport membrane. The location and type of hydrogen bonds have been precisely identified by intermolecular pair correlation functions. Furthermore, analysis of the proton coordination numbers shows that more protons are located in the neighborhood of the oxygen atoms of poly(vinyl phosphonate anion) than in the neighborhood of the nitrogen atoms of pyrazole. The proton conductivity, 1.06 × 10-3 Scm-1, is obtained by the self-diffusion coefficient of the protons at 423 K, which is reasonably close to the experimentally measured value, 2 × 10-4 Scm-1. In addition, the analysis of the proton trajectories provides us with the proton transfer mechanism in an anhydrous membrane: (a) proton hopping between the oxygen atoms of poly(vinyl phosphonate anion) and (b) proton hopping between two pyrazole molecules. Therefore, the network of the hydrogen bond is the pathway to transport protons via the processes of hydrogen bond forming and breaking.

13.
Micromachines (Basel) ; 10(12)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775279

RESUMO

A nano-stepping motor can translate or rotate when its piezoelectric element pair is electrically driven in-phase or anti-phase. It offers millimeter-level stroke, sub-micron-level stepping size, and sub-nanometer-level scanning resolution. This article proposes a visual servo system to control the nano-stepping motor, since its stepping size is not consistent due to changing contact friction, using a custom built microscopic instrument and image recognition software. Three kinds of trajectories-straight lines, circles, and pentagrams-are performed successfully. The smallest straightness and roundness ever tested are 0.291 µm and 2.380 µm. Experimental results show that the proposed controller can effectively compensate for the error and precisely navigate the rotor along a desired trajectory.

14.
J Mol Graph Model ; 92: 236-242, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31404877

RESUMO

Molecular dynamics (MD) simulations were carried out to study the physical properties of graphene-oxide (GO) and polydimethylsiloxane (PDMS) interfacial systems. Simulations were performed for GO molecules dispersed into short-chain, long-chain, and long-chain and cross-linked PDMS polymers. Various structural properties, dipole moments and dielectric constants of the graphene-oxide molecules were calculated, which were correlated with the electron transport properties of the GO/PDMS system. The effects of polymer length and type of linkage on transport properties were also examined.


Assuntos
Transporte de Elétrons , Grafite/química , Simulação de Dinâmica Molecular , Nanocompostos/química , Algoritmos , Modelos Moleculares , Estrutura Molecular
15.
Sci Rep ; 9(1): 8616, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197195

RESUMO

In this work, a high thermoelectric figure of merit, zT of 1.9 at 740 K is achieved in Ge1-xBixTe crystals through the concurrent of Seebeck coefficient enhancement and thermal conductivity reduction with Bi dopants. The substitution of Bi for Ge not only compensates the superfluous hole carriers in pristine GeTe but also shifts the Fermi level (EF) to an eligible region. Experimentally, with moderate 6-10% Bi dopants, the carrier concentration is drastically decreased from 8.7 × 1020 cm-3 to 3-5 × 1020 cm-3 and the Seebeck coefficient is boosted three times to 75 µVK-1. In the meantime, based on the density functional theory (DFT) calculation, the Fermi level EF starts to intersect with the pudding mold band at L point, where the band effective mass is enhanced. The enhanced Seebeck coefficient effectively compensates the decrease of electrical conductivity and thus successfully maintain the power factor as large as or even superior than that of the pristine GeTe. In addition, the Bi doping significantly reduces both thermal conductivities of carriers and lattices to an extremely low limit of 1.57 W m-1K-1 at 740 K with 10% Bi dopants, which is an about 63% reduction as compared with that of pristine GeTe. The elevated figure of merit observed in Ge1-xBixTe specimens is therefore realized by synergistically optimizing the power factor and downgrading the thermal conductivity of alloying effect and lattice anharmonicity caused by Bi doping.

16.
J Mol Graph Model ; 85: 331-339, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30292170

RESUMO

The application of high performance liquid chromatography (HPLC) to separate explosive chemicals was investigated by molecular dynamics (MD) simulations. The explosive ingredients including NG, RDX, HMX and TNT were assigned as solutes, while methanol (CH3OH) and acetonitrile (CH3CN) were assigned as solvents in the solution system. The polymeric-molecular siloxanes (SiC8) and poly-1,2-methylenedioxy-4-propenyl benzene (PISAF) compounds were treated as stationary phase in the simulation. The simulation results showed that the different species of explosive ingredients were separated successfully in the solutions by each of the constructed stationary phase of SiC8 and PISAF after a total simulation time of 12.0 ps approximately, which were consistent with the experimental analysis of HPLC spectra. The origin for the separation was found due to the electrostatic interactions between polymer and explosives.


Assuntos
Cromatografia Líquida , Substâncias Explosivas/química , Substâncias Explosivas/isolamento & purificação , Simulação de Dinâmica Molecular , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Nanotubos de Carbono/química , Relação Estrutura-Atividade
17.
Int J Mol Sci ; 18(7)2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28678159

RESUMO

Docking and molecular dynamics simulations have been carried out to investigate the interaction of a traditional Chinese medicine, WenQingYin, with the glutamate receptor 2 (GluR2) subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. Four representative drug components of WenQingYin, namely 2-(3,4-dihydroxyphenyl)-5,6,7-trihydroxy-4H-chromen-4-one (PHF), 4-hydroxy-3-methoxybenzoic acid (HMB), 4-(2,3-dihydroxy-3-methylbutoxy)-7H-furo[3,2-g]chromen-7-one (DHMBP) and methyl 7-formylcyclopenta[c]pyran-4-carboxylate (cerbinal), and their complexes with GluR2 were simulated. Our results show that PHF, HMB, and DHMBP formed a partial hydrogen bond with GluR2 in its ligand-binding domain. However, cerbinal was not stable in the ligand-binding domain of GluR2 and induced a significant change in the structure of GluR2. Three-dimensional plots represent the contact and movement situation of the traditional Chinese medicine molecules in the ligand-binding domain. The combined results of the docking and molecular dynamics simulations provide insight into the interaction between these traditional Chinese medicine molecules and proteins.


Assuntos
Medicamentos de Ervas Chinesas/química , Modelos Moleculares , Conformação Molecular , Receptores de AMPA/química , Sítios de Ligação , Medicamentos de Ervas Chinesas/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Quantitativa Estrutura-Atividade , Receptores de AMPA/metabolismo
18.
Sci Rep ; 6: 23143, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26975209

RESUMO

Spark plasma sintering (SPS) is currently widely applied to existing alloys as a means of further enhancing the alloys' figure of merit. However, the determination of the optimal sintering condition is challenging in the SPS process. This report demonstrates a systematic way to independently optimize the Seebeck coefficient S and the ratio of electrical to thermal conductivity (σ/κ) and thus achieve the maximum figure of merit zT = S(2)(σ/κ)T. Sb2-xInxTe3 (x = 0-0.2) were chosen as examples to validate the method. Although high sintering temperature and pressure are helpful in enhancing the compactness and electrical conductivity of pressed samples, the resultant deteriorated Seebeck coefficient and increasing thermal conductivity eventually offset the benefit. We found that the optimal sintering temperature coincides with temperatures at which the maximum Seebeck coefficient begins to degrade, whereas the optimal sintering pressure coincided with the pressure at which the σ/κ ratio reaches a maximum. Based on this principle, the optimized sintering conditions were determined, and the zT of Sb1.9In0.1Te3 is raised to 0.92 at 600 K, showing an approximately 84% enhancement. This work develops a facile strategy for selecting the optimal SPS sintering condition to further enhance the zT of bulk specimens.

19.
Arch Toxicol ; 90(9): 2249-2260, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26438401

RESUMO

Tubular cell apoptosis significantly contributes to cisplatin-induced acute kidney injury (AKI) pathogenesis. Although KCa3.1, a calcium-activated potassium channel, participates in apoptosis, its involvement in cisplatin-induced AKI is unknown. Here, we found that cisplatin treatment triggered an early induction of KCa3.1 expression associated with HK-2 cell apoptosis, the development of renal tubular damage, and apoptosis in mice. Treatment with the highly selective KCa3.1 blocker TRAM-34 suppressed cisplatin-induced HK-2 cell apoptosis. We further assessed whether KCa3.1 mediated cisplatin-induced AKI in genetic knockout and pharmacological blockade mouse models. KCa3.1 deficiency reduced renal function loss, renal tubular damage, and the induction of the apoptotic marker caspase-3 in the kidneys of cisplatin-treated KCa3.1 (-/-) mice. Pharmacological blockade of KCa3.1 by TRAM-34 similarly attenuated cisplatin-induced AKI in mice. Furthermore, we dissected the mechanisms underlying cisplatin-induced apoptosis reduction via KCa3.1 blockade. We found that KCa3.1 blockade attenuated cytochrome c release and the increase in the intrinsic apoptotic mediators Bax, Bak, and caspase-9 after cisplatin treatment. KCa3.1 blocking inhibited the cisplatin-induced activation of the endoplasmic reticulum (ER) stress mediator caspase-12, which is independent of calcium-dependent protease m-calpain activation. Taken together, KCa3.1 blockade protects against cisplatin-induced AKI through the attenuation of apoptosis by interference with intrinsic apoptotic and ER stress-related mediators, providing a potential target for the prevention of cisplatin-induced AKI.


Assuntos
Injúria Renal Aguda/prevenção & controle , Cisplatino/toxicidade , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Pirazóis/toxicidade , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Citoproteção , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/deficiência , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
20.
J Colloid Interface Sci ; 417: 310-6, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24407692

RESUMO

Molecular dynamics simulations were carried out to investigate the conformations of ferrocenyl-dicholesteryl N-formamidoformamide (Fc-LS2) molecules in solvents of methanol and 1-propanol. Fc-LS2 comprises ferrocene and cholesteryl units linked by a biocompatible N-formamidoformamide peptide unit. Our results showed that Fc-LS2 formed a gel with 1-propanol but not with methanol. Charge-transfer properties of Fc-LS2/1-propanol gel and Fc-LS2/methanol liquid were also investigated by quantum mechanical (QM) calculations. The QM results indicate that the amino acid linkages contribute to improved charge-transport properties and the transfer integrals of Fc-LS2/1-propanol are larger than those of Fc-LS2/methanol.


Assuntos
Ésteres do Colesterol/química , Colesterol/química , Compostos Ferrosos/química , Hidrazinas/química , Simulação de Dinâmica Molecular , 1-Propanol/química , Eletroquímica , Transporte de Elétrons , Géis , Concentração de Íons de Hidrogênio , Cinética , Metalocenos , Metanol/química , Conformação Molecular , Teoria Quântica , Soluções , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA